If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-8x-28=0
a = 7; b = -8; c = -28;
Δ = b2-4ac
Δ = -82-4·7·(-28)
Δ = 848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{848}=\sqrt{16*53}=\sqrt{16}*\sqrt{53}=4\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{53}}{2*7}=\frac{8-4\sqrt{53}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{53}}{2*7}=\frac{8+4\sqrt{53}}{14} $
| N/6=n+7/8 | | f+7=86 | | 5x-3=3×+5 | | w^2+5w-58=0 | | -11-5a=-(-30a-24) | | 13-3r=7 | | (d+5)^2=36 | | -2=t-88 | | 226=j-88 | | 9a+3=66a= | | 4k=-12.4 | | 5-3p=-43 | | 15b=-960 | | 25=4r−3 | | t+-995=-651 | | 5k+-20k+-14k−-12k=17 | | 52=-4n-8 | | 3/10n=17/10 | | -29=b/23 | | 6/15=14/x | | 5=0.5+x | | 6x+3=9x+18 | | j/7=8 | | 1/2z+4=10- | | -72=4g | | h/9=10 | | -37=q+-73 | | 2(6)+4y=8 | | 195=12-x | | X2-9y=3 | | 3=d/9 | | 30=b-22 |